15. Complexes with a Pincers. 2,6-Diphenylpyridine as Twofold-Deprotonated (C ^ N ^ C) Terdentate Ligand in C,C-trans-, and as Mono-deprotonated (C ^ N) Chelate Ligand in Chiral C,C-cis-Complexes of Platinum(II) and Palladium(II)

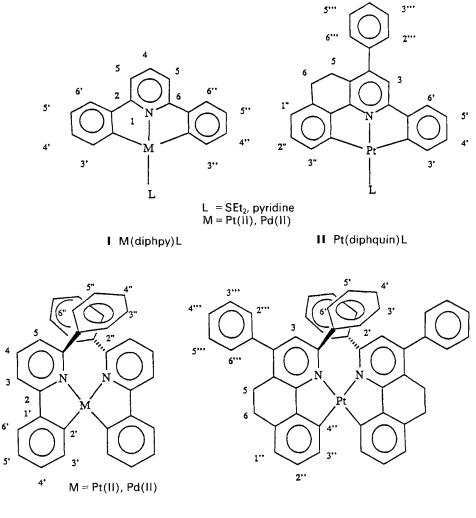
Preliminary Communication

by Christine Cornioley-Deuschel, Thomas Ward, and Alex von Zelewsky*

Institute of Inorganic Chemistry, University of Fribourg, Pérolles, CH-1700 Fribourg

(5. XI. 87)

2,6-Diphenylpyridine forms, as twofold-deprotonated, terdentate ligand, complexes with Pt(II) and Pd(II), having two adjacent five-membered metallocycles. As mono-deprotonated, bidentate ligand, it forms *cis*-bis-complexes having a chirality axis. Pt(II) complexes undergo thermal and photochemical oxidative addition reactions, yielding stable Pt(IV) compounds. Pd(II) complexes yield substitued 2,6-diphenylpyridine in photochemical reactions.


Recently, several compounds of a series of neutral, homoleptic members of Pt(II) and Pd(II) [1][2], containing two aromatic $(C \land N)$ ligands (*e.g.* phenylpyridine anion) in a *cis*-arrangement, have been prepared. This series was extended then to isomeric complexes of Pt(II) and Pd(II) [3], containing two different aromatic ligands $(C \land C)$ and $(N \land N)$ (2,2'-biphenyldiyl dianion and 2,2'-bipyridine). These compounds show interesting thermal and photochemical [5–8] reactivities. In this communication, we report the synthesis and some properties of several compounds, which have either C,C-*trans*-(I) or C,C-*cis*-configurations. The latter comprises a chirality axis. The new complexes I–IV are members of two classes of cyclometalated compounds. 2,6-Diphenylpyridine (H₂diphpy) acts as terdentate $(C \land N \land C)$ ligand in compound I and as bidentate $(C \land N)$ ligand in III. The analogous complexes with 5,6-dihydro-2,4-diphenylbenzo[*h*]quinoline (H₂diphquin) are II and IV.

Few complexes of platinum or palladium contain multidentate ligands in a C,C- or N,N-*trans*-arrangement [9–11]. There have been attempts [12] to prepare a cyclometalated Pd(II) complex where diphpy acts as a terdentate ($C \land N \land C$) ligand. Recently, *Canty et al.* [13] reported the synthesis of Pd compounds containing a terdentate ($C \land N \land C$) aromatic ligand, where the two benzyl moieties and the pyridine form six-membered chelate rings with the metal. Two adjacent five-membered metallocycles analogous to 2,2': 6',2"-terpyridine are more difficult to prepare, particularly for Pd(II).

The compounds are prepared by transmetalation of the dilithiated $(C \land N \land C)$ ligand with $M(SEt_2)_2Cl_2$ (M = Pt, Pd), and subsequent exchange of thioether by pyridine. The reaction always gives the two products, *trans*-M(C $\land N \land C$)L (I) and *cis*-M(C $\land N$)₂ (III). The latter can also be prepared from the monolithiated ligands.

4...

III M(Hdiphpy)₂

IV Pt(Hdiphquin)₂

Products I and III were characterized by elemental analysis, ¹H-NMR, ¹³C-NMR, ¹⁹⁵Pt-NMR, UV/VIS, and IR spectroscopies. Preliminary results from X-ray diffraction analysis show clearly *cis*-configuration for Pt(Hdiphpy)₂.

MLCT (Metal-to-Ligand Charge Transfer) transitions are observed for all the new compounds (M(diphpy) (py): $\lambda_{max} = 347$ nm (14580) for M = Pt; $\lambda_{max} = 384$ nm (6380) for M = Pd; M(Hdiphpy)₂: $\lambda_{max} = 404$ nm (2580) for M = Pt; $\lambda_{max} = 362$ nm (4000) for M = Pd).

As the *cis*-bis(phenylpyridinato,N,C²)platinum(II) [7] and the (biphenylato,C²,C²)-(bipyridine,N,N')platinum(II) [3], the presently studied Pt(II) complexes dissolved in CH_2Cl_2 undergo thermal oxidative addition reactions with an excess of CH_3I , yielding stable Pt(IV) compounds. After prolonged time in contact with CH₃I, the thermodynamically stable *cis*-adducts were isolated. Pd(diphpy)(py) does not react thermally with CH₃I. The photochemical behavior of all Pt(II) and Pd(II) complexes is remarkable, as already observed for *cis*-Pt(II) compounds [3] [7] [8] [14]. UV/VIS spectroscopy shows one or more isosbestic points during irradiation in halogenated solvents. The disappearance of the first MLCT band in the VIS part of the spectrum indicates a photochemical oxidative addition, leading to Pt(IV) complexes. Sterically hindered *cis*-Pt(II) compounds II and IV do not react in a clean manner. As observed with other Pd complexes [3] [14], Pd(diphpy)(py) yields RX_{n-1} -substituted diphpy from RX_n halogenated solvents as photodecomposition product. These reactions are promising for the catalytic formation of C-C bonds and for introducing functional groups on aromatic rings.

Experimental. – $Pt(SEt_2)Cl_2$ [15], $Pd(SEt_2)Cl_2$ [15] [16], and 5,6-dihydro-2,4-diphenylbenzo[*h*]quinoline [17] were prepared according to published procedures, 2,6-diphenylpyridine was purchased from *Aldrich*. All solvents were dried and distilled under N₂ prior to use. Reactions involving Li reagents were carried out under N₂ using *Schlenk* tube techniques.

General Procedure. BuLi (6.8 ml in 1.6N hexane) was added to the ligand (5.8 mmol) in Et₂O (50 ml) at -5° . The reddish soln. was stirred at -5° for 2 h, and then (only for the diphpy) kept for 12 h at 8°. A soln. of dilithiated ligand (1.08 mmol) in Et₂O (50 ml) was added slowly to a suspension of PtCl₂(SEt₂)₂ (0.95 mmol) in Et₂O (20 ml) at -10° . After stirring 45 min at -10° , the mixture was hydrolyzed and extracted with CH₂Cl₂. The org. phases were dried and concentrated to an oil, which was then purified by flash chromatography (SiO₂, acetone/hexane/CH₂Cl₂ 1:6:3). Products I (R = SEt₂; yield 10%) and III were recrystallized in CH₂Cl₂/hexane (Pt(diphpy) (SEt₂) as orange-red needles, and Pt(Hdiphpy)₂ and Pt(Hdiphquin)₂ as yellow needles). Pt(C $\wedge N \wedge C$) (SEt₂) dissolved in CH₂Cl₂ reacted with pyridine to give Pt(C $\wedge N \wedge C$) (py) as orange needles.

A soln. of Li₂diphpy (5.8 mmol) in Et₂O (80 ml) was added extremely slowly to a suspension of Pd(SEt₂)₂Cl₂ in Et₂O (50 ml) at -78° . After stirring 1 h, pyridine (4 ml) was added slowly and the temp. raised to -65° . The tan heterogeneous mixture was stirred 30 min at -78° , before removal of the refrigerant bath. Once the soln. had reached 0°, it was hydrolyzed. After extractions with CH₂Cl₂, the org. phase was dried, reduced in volume, and purified by flash chromatography several times (SiO₂, Et₂O/hexane 1:6, then acetone/hexane/CH₂Cl₂ 6:6:3) giving I (yield 1.4%) and III.

Characterization of the Compounds. (2,6-Diphenylpyridinato, N, $C^{Z'}, C^{Z''}$)(pyridine)platinum(II) (I; L = py, M = Pt(II)). ¹H-NMR (360 MHz, CDCl₃): 6.92 (ddd, J(Pt, H) = 24, H-C(3'), H-C(3'')); 9.07 (ddd, J(Pt, H) = 44, H-C(2) of py, H-C(6) of py). Anal. calc.: C52.42, H 3.18, N 5.57; found: C 52.48, H 3.20, N 5.56.

cis-Bis(2,6-diphenylpyridinato,N, C^2)platinum(II) (III; M = Pt(II)). ¹H-NMR (360 MHz CD₂Cl₂): 8.25 (d, J(Pt, H) \approx 50, H–C(3')); 8.37 (br., H–C(2'')). Anal. calc.: C 62.40, H 3.72, N 4.28; found: C 62.28, H 3.69, N 4.27.

(2,6-Diphenylpyridinato, N,C^2,C^{2^*}) (pyridine)palladium(II) $\cdot 0.5 CH_2Cl_2$ (I; L = py, M = Pd(II)). ¹H-NMR (360 MHz, CD₂Cl₂): 7.03 (dd, H-C(3'), H-C(3'')); 8.84 (dd, H-C(2) of py, H-C(6) of py). Anal. calc.: C 59.09, H 3.80, N 6.13; found: C 59.10, H 3.75, N 6.21.

cis-*Bis*(2,6-*diphenylpyridinato*,*N*, $C^{2'}$)*palladium*(*II*) · 2 *CH*₂*Cl*₂ (**III**; M = Pd(II)). ¹H-NMR (360 MHz, CD₂Cl₂): 8.25 (*d*, H–C(3')); 8.84 (*d*, H–C(2'')). Anal. cale. C 57.42, H 3.92, N 3.88; found: C 58.68, H 3.82, N 3.80.

This work was supported by the Swiss National Science Foundation.

REFERENCES

- [1] L. Chassot, E. Mueller, A. von Zelewsky, Inorg. Chem. 1984, 23, 4249.
- [2] P. Jolliet, Thesis No. 926, University of Fribourg, 1987.
- [3] C. Cornioley-Deuschel, A. von Zelewsky, Inorg. Chem. 1987, 26, 3354.
- [4] M. Maestri, D. Sandrini, V. Balzani, L. Chassot, P. Jolliet, A. von Zelewsky, Chem. Phys. Lett. 1985, 122, 375.
- [5] S. Bonafade, M. Ciano, F. Bolletta, V. Balzani, L. Chassot, A. von Zelewsky, J. Phys. Chem. 1986, 90, 3836.
- [6] L. Chassot, A. von Zelewsky, D. Sandrini, M. Maestri, V. Balzani, J. Am. Chem. Soc. 1986, 108, 6084.
- [7] L. Chassot, A. von Zelewsky, Helv. Chim. Acta 1986, 69, 1855.

- [8] D. Sandrini, M. Maestri, V. Balzani, L. Chassot, A. von Zelewsky, J. Am. Chem. Soc., in press.
- [9] G. Longoni, P. Fantucci, P. Chini, F. Canziani, J. Organomet. Chem. 1972, 39, 413.
- [10] J. Terheiden, G. van Koten, I.C. Vinke, A.L. Speck, J. Chem. Soc. 1985, 107, 2891.
- [11] G. Newkome, Inorg. Chem. 1985, 24, 811.
- [12] J. Selbin, J. Gutierrez, J. Organomet. Chem. 1983, 246, 95.
- [13] A.J. Canty, N.J. Minchin, B.W. Skelton, A. M. White, J. Chem. Soc., Dalton Trans. 1987, 1477.
- [14] P.J. Leeuwen, C.F. Roobeek, R. Huis, J. Organomet. Chem. 1977, 142, 233.
- [15] G.A. Kauffman, D.O. Cowan, Inorg. Chem. 1960, 6, 211.
- [16] A. Katrisky, S.S. Thind, J. Chem. Soc., Perkin Trans. 1 1980, 1895.
- [17] F.G. Mann, D. Purdie, J. Chem. Soc., Perkin Trans. 1935, 1549.